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Shared-Variable Concurrency (20 Marks)

Question 1 (10 marks)

Algorithm 6 below is a close relative of Peterson’s algorithm for the critical section problem.
It solves the critical section problem.

Algorithm 6
boolean b[0..1] < {false, false}
integer turn
p q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2:  b[0] « true q2:  b[1] < true
p3: turn < 0 q3: turn <1
p4:  await b[1] = false or turn =1 g4 await b[0] = false or turn = 0
pb: critical section q5: critical section
p6:  b[0] < false q6:  b[1] « false

(a) Does Algorithm 6 still solve the critical section problem if we swap lines 2 and 3, that is,
exchange statement p2 with statement p3 and exchange statement g2 with statement q37

(b) Consider another variant of Algorithm 6 above where the statement await b[1] = false is
added at the end of the code of process p. Does the modified algorithm satisfy deadlock
freedom?

(c) Consider the same variant of Algorithm 6 as in part b. Does the modified algorithm
satisfy eventual entry?

Justify each of your answers briefly.

Question 2 (10 marks)

The Savings Account Problem. A savings account is shared by several people (processes). Each
person may deposit or withdraw funds from the account. The current balance in the account
is the sum of all deposits to date minus the sum of all withdrawals to date. The balance
must never become negative. A deposit never has to delay (except for mutual exclusion), but
a withdrawal has to wait until there are sufficient funds. Withdrawals have to be serviced
first-come-first-served.

Develop a monitor to solve this problem.! The monitor should have two procedures: de-

posit(amount) and withdraw(amount). Specify a monitor invariant. Assume the arguments to
deposit and withdraw are positive. Use the Signal-and-Continue discipline. Explain how your
solution implements each of the requirements.

You may use pseudo monitor notation similar to the one used in the textbook, that is, you have at your
disposal variables of type condition and functions waitC, signalC, and empty to access condition variables.
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Message-Passing Concurrency (30 Marks)

Question 3 (8 marks)

Two kinds of processes, A’s and B’s, enter a room. An B process cannot leave until it meets
two A processes and an A process cannot leave until it meets a B process. Each process leaves
the room—without meeting any other processes—once it has met the required number of other
processes.

(a) Develop a server process to implement this synchronisation. Show the interface of the
processes modelling individual A and B processes.

(b) Modify your answer to a so that the first of the two A processes that meets a B process
does not leave the room until after the B process meets a second A process.

Use Promela (with message passing primitives only) to express your solutions.

Question 4 (10 marks)
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Figure 1: The synchronous transition diagram S;[|Ss||M||R.

Consider the synchronous transition diagram in Fig. 1 and prove
{true} S1[|So||M||R{z =3 ANy=1Az=0}

with Levin & Gries or AFR for full marks or via semantics and Floyd for half marks.



Question 5 (12 marks)

System model: The system comprises of n € N nodes named 1,...,n. Nodes communicate
by passing messages over asynchronous, reliable channels. Every node can send messages to
every other node. Nodes have unique IDs. Neither nodes nor channels crash.

Each process has a clock CL; that ranges over the non-negative integers and starts at 0. A
timestamp is a pair (cv, ) consisting of a clock value and a process ID. Timestamps are ordered
lexicographically, that is, we use the process IDs to break ties to have a total order on process’
clock values.

Nodes execute local actions, sends, and receives. These actions are augmented as follows to
accommodate timestamping.

e Every local action increments the clock by 1.

e Every send of a message m of node i is replaced by (a) incrementing the clock, CL;++,
followed by (b) sending (m, (CL;, )).

e Whenever a node i receives any message timestamped with (v, k), it updates its clock CL;
to max(CL;,v) + 1.

Each node ¢ maintains an initially empty request queue rq; consisting of timestamped messages,
ordered lexicographically by their timestamps.

The following protocol is proposed to solve the critical section problem with the aid of times-
tamps. For simplicity, the individual actions such as R1 can be assumed to be atomic.

Requesting access.

R1 When node ¢ wants to enter its CS, it sends a REQUEST message to all other nodes, and
places the request (REQUEST, (CL;, 7)) on its own request queue r¢,. (Recall that first the
clock is incremented and that all the messages are timestamped.)

R2 When a node k receives a message REQUEST from ¢, it places node i’s request on its request
queue 7q; and sends a REPLY message to 7.

Gaining access. Node 7 enters its CS when both

A1l i has received from every other node a message with timestamp lexicographically greater
than the timestamp of its own REQUEST, and

A2 i’s own request is at the head of rg,.

Releasing the CS.

E1l Upon exiting the CS, node ¢ removes its request from r¢; and sends a timestamped RELEASE
message to all other nodes.

E2 When node k receives RELEASE from ¢, it removes ¢’s request from its request queue rq,.

In the context of the model and algorithm outlined above, answer the following questions.
Justify your answers.

(a) Show that this algorithm does not guarantee mutual exclusion.



(b) Show that this algorithm guarantees mutual exclusion if channels are not only reliable
but also FIFO.

(c¢) Assuming weak fairness, does the algorithm guarantee eventual entry if the channels are
not only reliable but also FIFO?



